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We present the first application of an artificial neural network trained through a deep
reinforcement learning agent to perform active flow control. It is shown that, in a
two-dimensional simulation of the Kármán vortex street at moderate Reynolds number
(Re=100), our artificial neural network is able to learn an active control strategy from
experimenting with the mass flow rates of two jets on the sides of a cylinder. By
interacting with the unsteady wake, the artificial neural network successfully stabilizes
the vortex alley and reduces drag by approximately 8 %. This is performed while using
small mass flow rates for the actuation, of the order of 0.5 % of the mass flow rate
intersecting the cylinder cross-section once a new pseudo-periodic shedding regime
is found. This opens the way to a new class of methods for performing active flow
control.
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1. Introduction
Drag reduction and flow control are techniques of critical interest for industry

(Brunton & Noack 2015). For example, 20 % of all energy losses on modern
heavy-duty vehicles are due to aerodynamic drag (of which a large part is due
to flow separation on tractor pillars (see Vernet et al. 2014)), and drag is naturally
the main source of energy losses for an airplane. Drag is also a phenomenon that
penalizes animals, and Nature shows examples of drag mitigation techniques. It is,
for example, thought that structures of the skin of fast-swimming sharks interact with
the turbulent boundary layer around the animal, and reduce drag by as much as 9 %
(Dean & Bhushan 2010). This is therefore a proof-of-existence that flow control can
be achieved with benefits, and is worth aiming for.

In the past, much research has been carried out towards so-called passive drag
reduction methods, for example using micro vortex generators for passive control of
transition to turbulence (Fransson et al. 2006; Shahinfar et al. 2012). While it should
be underlined that this technique is very different from the one used by sharks
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(preventing transition to turbulence by energizing the linear boundary layer, contra
reducing the drag of a fully turbulent boundary layer), benefits in terms of reduced
drag can also be achieved. Another way to obtain drag reduction is by applying an
active control to the flow. A number of techniques can be used in active drag control
and have been proven effective in several experiments, a typical example being to use
small jets (Schoppa & Hussain 1998; Glezer 2011). Interestingly, it has been shown
that effective separation control can be achieved with even quite weak actuation, as
long as it is used in an efficient way (Schoppa & Hussain 1998). This underlines
the need to develop techniques that can effectively control a complex actuation input
into a flow, in order to reduce drag.

Unfortunately, designing active flow control strategies is a complex endeavour
(Duriez, Brunton & Noack 2016). Given a set of point measurements of the flow
pressure or velocity around an object, there is no easy way to find a strategy to
use this information in order to perform active control and reduce drag. The high
dimensionality and computational cost of the solution domain (set by the complexity
and nonlinearity inherent to fluid mechanics) mean that analytical solutions and
real-time predictive simulations (that would decide which control to use by simulating
several control scenarios in real time) seem out of reach. Despite the considerable
efforts put in to the theory of flow control, and the use of a variety of analytical
and semi-analytical techniques (Barbagallo, Sipp & Schmid 2009; Barbagallo et al.
2012; Sipp & Schmid 2016), bottom-up approaches based on an analysis of the
flow equations face considerable difficulties when attempting to design flow control
techniques. A consequence of these challenges is the simplicity of the control
strategies used in most published works about active flow control, which traditionally
focus on either harmonic or constant control input (Schoppa & Hussain 1998).
Therefore, there is a need to develop efficient control methods, that perform complex
active control and take full advantage of actuation possibilities. Indeed, it seems that,
as of today, the actuation possibilities are large, but only simplistic (and probably
suboptimal) control strategies are implemented. To the knowledge of the authors, only
a few published examples of successful complex active control strategies are available
with respect to the importance and extent of the field (Pastoor et al. 2008; Erdmann
et al. 2011; Gautier et al. 2015; Guéniat, Mathelin & Hussaini 2016; Li et al. 2017).

In the present work, we aim at introducing for the first time deep neural networks
and reinforcement learning to the field of active flow control. Deep neural networks
are revolutionizing large fields of research, such as image analysis (Krizhevsky,
Sutskever & Hinton 2012), speech recognition (Schmidhuber 2015) and optimal
control (Mnih et al. 2015; Duan et al. 2016). Those methods have surpassed previous
algorithms in all these examples, including methods such as genetic programming, in
terms of complexity of the tasks learned and learning speed. It has been speculated
that deep neural networks will bring advances also to fluid mechanics (Kutz 2017),
but to date those have been limited to a few applications, such as the definition
of reduced-order models (Wang et al. 2018), the effective control of swimmers
(Verma, Novati & Koumoutsakos 2018) or performing particle image velocimetry
(PIV) (Rabault, Kolaas & Jensen 2017). As deep neural networks, together with the
reinforcement learning framework, have allowed recent breakthroughs in the optimal
control of complex dynamic systems (Lillicrap et al. 2015; Schulman et al. 2017), it
is natural to attempt to use them for optimal flow control.

Artificial neural networks (ANNs) are the attempt to reproduce in machines some of
the features that are believed to be at the origin of the intelligent thinking of the brain
(LeCun, Bengio & Hinton 2015). The key idea consists in performing computations
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using a network of simple processing units, called neurons. The output value of
each neuron is obtained by applying a transfer function on the weighted sum of its
inputs (Goodfellow et al. 2016). When performing supervised learning, an algorithm,
such as stochastic gradient descent, is then used for tuning the neurons’ weights so
as to minimize a cost function on a training set (Goodfellow et al. 2016). Given
the success of this training algorithm, ANNs can in theory solve any problem since
they are universal approximators: a large enough feed-forward neural network using a
nonlinear activation function can fit arbitrarily well any function (Hornik, Stinchcombe
& White 1989), and the recurrent neural network paradigm is even Turing-complete
(Siegelmann & Sontag 1995). Therefore, virtually any problem or phenomenon that
can be represented by a function could be a field of experimentation with ANNs.
However, the problem of designing the ANNs, and designing the algorithms that train
and use them, is still the object of active research.

While the case of supervised learning (i.e. when the solution is known and the
ANN should simply be trained at reproducing it, such as image labelling or PIV)
is now mostly solved owing to the advance of deep neural networks and deep
convolutional networks (He et al. 2016), the case of reinforcement learning (when
an agent tries to learn through the feedback of a reward function) is still the focus
of much attention (Mnih et al. 2013; Gu et al. 2016; Schulman et al. 2017). In
the case of reinforcement learning, an agent (controlled by the ANN) interacts with
an environment through three channels of exchange of information in a closed-loop
fashion. First, the agent is given access at each time step to an observation ot of the
state st of the environment. The environment can be any stochastic process, and the
observation is only a noisy, partial description of the environment. Second, the agent
performs an action, at, that influences the time evolution of the environment. Finally,
the agent receives a reward rt depending on the state of the environment following the
action. The reinforcement learning framework consists in finding strategies to learn
from experimenting with the environment, in order to discover control sequences
a(t = 1, . . . , T) that maximize the reward. The environment can be any system that
provides the interface (ot, at, rt): it could be an Atari game emulator (Mnih et al.
2013), a robot acting in the physical world that should perform a specific task (Kober,
Bagnell & Peters 2013), or a fluid mechanics system whose drag should be minimized
in our case.

In the present work, we apply for the first time the deep reinforcement learning
(DRL) paradigm (i.e. reinforcement learning performed on a deep ANN) to an
active flow control problem. We use a proximal policy optimization (PPO) method
(Schulman et al. 2017) together with a fully connected artificial neural network
(FCANN) to control two synthetic jets located on the sides of a cylinder immersed
in a constant flow in a two-dimensional (2D) simulation. The geometry is chosen
owing to its simplicity, the low computational cost associated with resolving a 2D
unsteady wake at moderate Reynolds number, and the simultaneous presence of the
causes that make active flow control challenging (time dependence, nonlinearity, high
dimensionality). The PPO agent manages to control the jets and to interact with the
unsteady wake to reduce the drag. We have chosen to release all our code as open
source, to help trigger interest in those methods and facilitate further developments.
In the following, we first present the simulation environment, before giving details
about the network and reinforcement framework, and finally we offer an overview of
the results obtained.
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FIGURE 1. (Colour online) Unsteady non-dimensional pressure wake behind the cylinder
after flow initialization without active control. The location of the velocity probes is
indicated by the black dots. The location of the control jets is indicated by the red dots.

2. Methodology
2.1. Simulation environment

The PPO agent performs active flow control in a 2D simulation environment. In
the following, all quantities are considered non-dimensionalized. The geometry of
the simulation, adapted from the 2D test case of well-known benchmarks (Schäfer
et al. 1996), consists of a cylinder of non-dimensional diameter D = 1 immersed in
a box of total non-dimensional length L= 22 (along the X-axis) and height H = 4.1
(along the Y-axis). Similarly to the benchmark of Schäfer et al. (1996), the cylinder
is slightly off the centreline of the domain (a shift of 0.05 in the Y-direction is used),
in order to help trigger the vortex shedding. The inflow profile (on the left wall of
the domain) is parabolic, following the formula (cf. 2D-2 test case in Schäfer et al.
(1996))

U(y)= 6(H/2− y)(H/2+ y)/H2, (2.1)

where (U(y),V(y)= 0) is the non-dimensionalized velocity vector. Using this velocity
profile, the mean velocity magnitude is Ū = 2U(0)/3 = 1. A no-slip boundary
condition is imposed on the top and bottom walls and on the solid walls of the
cylinder. An outflow boundary condition is imposed on the right wall of the domain.
The configuration of the simulation is shown in figure 1. The Reynolds number
based on the mean velocity magnitude and cylinder diameter (Re = ŪD/ν, with
ν the kinematic viscosity) is set to Re = 100. Computations are performed on an
unstructured mesh generated with Gmsh (Geuzaine & Remacle 2009). The mesh
is refined around the cylinder and is composed of 9262 triangular elements. A
non-dimensional, constant numerical time step dt = 5 × 10−3 is used. The total
instantaneous drag on the cylinder C is computed as follows:

FD =

∫
C
(σ · n) · ex dS, (2.2)

where σ is the Cauchy stress tensor, n is the unit vector normal to the outer cylinder
surface, and ex = (1, 0). In the following, the drag is normalized into the drag
coefficient

CD =
FD

1
2ρŪ2D

, (2.3)

where ρ = 1 is the non-dimensional volumetric mass density of the fluid. Similarly,
the lift force FL and lift coefficient CL are defined as

FL =

∫
C
(σ · n) · ey dS, (2.4)
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and
CL =

FL
1
2ρŪ2D

, (2.5)

where ey = (0, 1).
In the interest of short solution time (e.g. Valen-Sendstad et al. 2012), the governing

Navier–Stokes equations are solved in a segregated manner. More precisely, the
incremental pressure correction scheme (IPCS) method (Goda 1979) with an explicit
treatment of the nonlinear term is used. More details are available in appendix B.
Spatial discretization then relies on the finite-element method implemented within the
FEniCS framework (Logg, Mardal & Wells 2012).

We remark that both the mesh density and the Reynolds number could easily be
increased in a later study, but are kept low here as that allows for fast training on a
laptop, which is the primary aim of our proof-of-concept demonstration.

In addition, two jets (1 and 2) normal to the cylinder wall are implemented on the
sides of the cylinder, at angles θ1 = 90◦ and θ2 = 270◦ relative to the flow direction.
The jets are controlled through their non-dimensional mass flow rates, Qi, i= 1, 2, and
are set through a parabolic-like velocity profile going to zero at the edges of the jet
(see appendix B for the details). The jet widths are set to 10◦. Choosing jets normal
to the cylinder wall, located at the top and bottom extremities of the cylinder, means
that all drag reduction observed will be the result of indirect flow control, rather than
direct injection of momentum. In addition, the control is set up in such a way that
the total mass flow rate injected by the jets is zero, i.e. Q1 +Q2 = 0. This synthetic
jets condition is chosen as it is more realistic than a case when mass is added or
subtracted from the flow, and makes the numerical scheme more stable, especially
with respect to the boundary conditions of the problem. In addition, it ensures that the
drag reduction observed is the result of actual flow control, rather than some sort of
propulsion phenomenon. In the following, the injected mass flow rates are normalized
as follows:

Q∗i =Qi/Qref , (2.6)

where Qref =
∫ D/2
−D/2 ρU(y) dy is the reference mass flow rate intercepting the cylinder.

During learning, we impose that |Q∗i | < 0.06. This helps in the learning process by
preventing non-physically large actuation, and prevents problems in the numerics of
the simulation by enforcing the Courant–Friedrichs–Lewy (CFL) condition close to the
actuation jets.

Finally, information is extracted from the simulation and provided to the PPO
agent. A total of 151 velocity probes, which report the local value of the horizontal
and vertical components of the velocity field, are located in several locations in
the neighbourhood of the cylinder and in its wake (see figure 1). This means that
the network gets detailed information about the flow configuration, which is our
objective, as this article focuses on finding the best possible control strategy of the
vortex shedding pattern. A different question would be to assess the ability of the
network to perform control with a partial observation of the system. To illustrate that
this is possible with adequate training, we provide some results with an input layer
reduced to 11 and five probes in appendix E, but further parameter space study and
sensitivity analysis is beyond the scope of the present paper and is left to future
work.

An unsteady wake develops behind the cylinder, which is in good agreement with
what is expected at this Reynolds number. A simple benchmark of the simulation
was performed by observing the pressure fluctuations, drag coefficient and Strouhal
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number St = fD/Ū, where f is the vortex shedding frequency. The mean value of
CD in the case without actuation (approximately 3.205) is within 1 % of what is
reported in the benchmark of Schäfer et al. (1996), which validates our simulations,
and similar agreement is found for St (typical value of approximately 0.30). In
addition, we also performed tests on refined meshes, going up to approximately
30 000 triangular elements, and found that the mean drag varied by less than 1 %
following mesh refinement. A pressure field snapshot of the fully developed unsteady
wake is presented in figure 1.

2.2. Network and reinforcement learning framework
As stated in the introduction, DRL sees the fluid mechanic simulation as yet another
environment to interact with through three simple channels: the observation ot (here,
an array of point measurements of velocity obtained from the simulation), the action
at (here, the active control of the jets, imposed on the simulation by the learning
agent), and the reward rt (here, the time-averaged drag coefficient provided by the
environment, penalized by the mean lift coefficient magnitude; see further in this
section). Based on this limited information, DRL trains an ANN to find closed-loop
control strategies deciding at from ot at each time step, so as to maximize rt.

Our DRL agent uses the PPO method (Schulman et al. 2017) for performing
learning. PPO is a reinforcement learning algorithm that belongs to the family of
policy gradient methods. This method was chosen for several reasons. In particular,
it is less complex mathematically and faster than concurring trust region policy
optimization (TRPO) methods (Schulman et al. 2015), and requires little to no
metaparameter tuning. It is also better adapted to continuous control problems than
deep Q network (DQN) learning (Mnih et al. 2015) and its variations (Gu et al.
2016). From the point of view of the fluid mechanist, the PPO agent acts as a
black box (though details about its internals are available in Schulman et al. (2017)
and the references therein). A brief introduction to the PPO method is provided in
appendix C.

The PPO method is episode-based, which means that it learns from performing
active control for a limited amount of time before analysing the results obtained and
resuming learning with a new episode. In our case, the simulation is first performed
with no active control until a well-developed unsteady wake is obtained, and the
corresponding state is saved and used as a start for each subsequent learning episode.

The instantaneous reward function, rt, is computed as follows:

rt =−〈CD〉T − 0.2|〈CL〉T |, (2.7)

where 〈 · 〉T indicates the sliding average back in time over a duration corresponding
to one vortex shedding cycle. The ANN tries to maximize this function rt, i.e. to
make it as little negative as possible, therefore minimizing drag and mean lift (to
take into account long-term dynamics, an actualized reward is actually used during
gradient descent; see appendix C for more details). This specific reward function
has several advantages compared with using the plain instantaneous drag coefficient.
Firstly, using values averaged over one vortex shedding cycle leads to less variability
in the value of the reward function, which was found to improve learning speed
and stability. Secondly, the use of a penalization term based on the lift coefficient
is necessary to prevent the network from ‘cheating’. Indeed, in the absence of this
penalization, the ANN manages to find a way to modify the configuration of the flow
in such a way that a larger drag reduction is obtained (up to approximately 18 %
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drag reduction, depending on the simulation configuration used), but at the cost of a
large induced lift, which is damaging in most practical applications.

The ANN used is relatively simple, being composed of two dense layers of 512
fully connected neurons, plus the layers required to acquire data from the probes,
and generate data for the two jets. This network configuration was found empirically
through trial and error, as is usually done with ANNs. Results obtained with smaller
networks are less good, as their modelling ability is not sufficient in regards to
the complexity of the flow configuration obtained. Larger networks are also less
successful, as they are harder to train. In total, our network has slightly over 300 000
weights. For more details, readers are referred to the code implementation (see
appendix A).

At first, no learning could be obtained from the PPO agent interacting with the
simulation environment. The reason for this was the difficulty for the PPO agent
to learn the necessity to set time-correlated, continuous control signals, as the PPO
first tries purely random control and must observe some improvement on the reward
function for performing learning. Therefore, we implemented two tricks to help the
PPO agent learn control strategies:

(i) The control value provided by the network is kept constant for a duration of
50 numerical time steps, corresponding to approximately 7.5 % of the vortex
shedding period. This means, in practice, that the PPO agent is allowed to
interact with the simulation and update its control only each 50 time steps.

(ii) The control is made continuous in time to avoid jumps in the pressure and
velocity due to the use of an incompressible solver. For this, the control at each
time step in the simulation is obtained for each jet as cs+1 = cs + α(a − cs),
where cs is the control of the jet considered at the previous numerical time step,
cs+1 is the new control, a is the action set by the PPO agent for the current 50
time steps and α = 0.1 is a numerical parameter.

Using those technical tricks, and choosing an episode duration Tmax = 20.0 (which
spans approximately 6.5 vortex shedding periods, and corresponds to 4000 numerical
time steps, i.e. 80 actions by the network), the PPO agent is able to learn a control
strategy after typically approximately 200 epochs corresponding to 1300 vortex
shedding periods or 16 000 sampled actions, which requires roughly 24 hours of
training on a modern desktop using one single core. This training time could be
reduced easily by at least a factor of 10, using more cores to parallelize the data
sampling from the epochs which is a fully parallel process. Fine tuning the policy
can take a bit longer time, and up to approximately 350 epochs can be necessary to
obtain a fully stabilized control strategy. A training has also been performed going
up to over 1000 episodes to confirm that no more changes were obtained if the
network is allowed to train for a significantly longer time. Most of the computation
time is spent in the flow simulation. This set-up with simple, quick simulations
makes experimentation and reproduction of our results easy, while being enough for
a proof-of-concept in the context of a first application of reinforcement learning to
active flow control and providing an interesting control strategy for further analysis.

3. Results
3.1. Drag reduction through active flow control

Robust learning is obtained by applying the methodology presented in the previous
section. This is illustrated by figure 2, which presents the averaged learning curve
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FIGURE 2. (Colour online) Illustration of the robustness of the learning process. The drag
values reported are obtained at each training epoch (including exploration noise), for 10
different trainings using the same metaparameters, but different values of the random seed.
Robust learning takes place within 200 epochs, with fine converged strategy requiring a
few more epochs to stabilize. The drag reduction is slightly less than what is reported in
the rest of the text, as these results include the random exploration noise and are computed
over the second half of the training epochs, where some of the transient in the drag value
is still present during training.

and the confidence interval corresponding to 10 different trainings performed using
different seeds for the random number generator. In figure 2, the drag presented is
obtained by averaging the drag coefficient obtained on the second half of each training
epoch. This averaging is performed to smooth the effect of both vortex shedding and
drag fluctuations due to the exploration. While it may include part of the initial
transition from the undisturbed vortex shedding to the controlled case, it is a good
relative indicator of policy convergence. Estimating at each epoch the asymptotic
quality of the fully established control regime would be too expensive, which is the
reason why we resort to this averaged value. Using different random seeds results
in different trainings, as random data are used in the exploration noise and for the
random sampling of the replay memory used during stochastic gradient descent. All
other parameters are kept constant. The data presented indicate that learning takes
place consistently in approximately 200 epochs, with fine convergence and tuning
requiring up to approximately 400 epochs. Owing to the presence of exploration
noise and the averaging being performed on a time window including some of the
transition in the flow configuration from free shedding to active control, the quality of
the drag reduction reported in figure 2 is slightly less than in the case of deterministic
control in the pseudo-periodic actively controlled regime (i.e. when a modified stable
vortex shedding is obtained with the most likely action of the optimal policy being
picked up at each time step implying that, in the case of deterministic control, no
exploration noise is present), which is as expected. The final drag reduction value
obtained in the deterministic mode (not shown so as not to overload figure 2) is also
consistent across the runs.

Therefore, it is clear that the ANN is able to consistently reduce drag by applying
active flow control following training through the DRL/PPO algorithm, and that the
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FIGURE 3. (Colour online) Time-resolved value of the drag coefficient CD in the case
without (baseline curve) and with (controlled curve) active flow control, and corresponding
normalized mass flow rate of the control jet 1 (Q∗1, inset). The effect of the flow control
on the drag is clearly visible: a reduction of the drag of approximately 8 % is observed,
and the fluctuations in time due to vortex shedding are drastically reduced. Two successive
phases can be distinguished in the mass flow rate control: first, a relatively large control
is used to change the flow configuration, up to a non-dimensional time of approximately
11, before a pseudo-periodic regime with very limited flow control is established.

learning is both stable and robust. All results presented further in both this section
and the next one are obtained using deterministic prediction, and therefore exploration
noise is not present in the following figures and results. The time series for the drag
coefficient obtained using the active flow control strategy discovered through training
in the first run, compared with the baseline simulation (no active control, i.e. Q1 =

Q2= 0), is presented in figure 3 together with the corresponding control signal (inset).
Similar results and control laws are obtained for all training runs, and the results
presented in figure 3 are therefore representative of the learning obtained with all 10
realizations.

In the case without actuation (baseline), the drag coefficient CD varies periodically
at twice the vortex shedding frequency, as should be expected. The mean value for
the drag coefficient is 〈CD〉 ≈ 3.205, and the amplitude of the fluctuations of the drag
coefficient is approximately 0.034. By contrast, the mean value for the drag coefficient
in the case with active flow control is 〈C′D〉 ≈ 2.95, which represents a drag reduction
of approximately 8 %.

To put this drag reduction into perspective, we estimate the drag obtained in
the hypothetical case where no vortex shedding is present. For this, we perform a
simulation with the upper half-domain and a symmetric boundary condition on the
lower boundary (which cuts the cylinder through its equator). More details about
this simulation are presented in appendix D. The steady-state drag obtained on a full
cylinder in the case without vortex shedding is then CDs = 2.93 (see appendix D),
which means that the active control is able to suppress approximately 93 % of the
drag increase observed in the baseline without control compared with the hypothetical
reference case where the flow would be kept completely stable.



www.manaraa.com

290 J. Rabault, M. Kuchta, A. Jensen, U. Réglade and N. Cerardi

In addition to this reduction in drag, the fluctuations of the drag coefficient are
reduced to approximately 0.0016 by the active control, i.e. a factor of roughly 20
compared with the baseline. Similarly, fluctuations in lift are reduced, though by
a more modest factor of approximately 5.7. Finally, a Fourier analysis of the drag
coefficients obtained shows that the actuation slightly modifies the characteristic
frequency of the system. The actively controlled system has a shedding frequency
approximately 3.5 % lower than the baseline.

Several interesting points are visible from the active control signal imposed by
the ANN presented in figure 3. Firstly, the active flow control is composed of
two phases. In the first one, the ANN changes the configuration of the flow by
performing a relatively large transient actuation (non-dimensional time ranging from
0 to approximately 11). This changes the flow configuration, and sets the system in
a state in which less drag is generated. Following this transient actuation, a second
regime is reached in which a smaller actuation amplitude is used. The actuation
in this new regime is pseudo-periodic. Therefore, it appears that the ANN has
found a way to both set the flow in a modified configuration in which less drag is
present, and keep it in this modified configuration at a relatively small cost. In a
separate simulation, the small actuation present in the pseudo-periodic regime once
the initial actuation has taken place was suppressed. This led to a rapid collapse of
the modified flow regime, and the original base flow configuration was recovered. As
a consequence, it appears that the modified flow configuration is unstable, though
only small corrections are needed to keep the system in its neighbourhood.

Secondly, it is striking to observe that the ANN resorts to quite small actuations.
The peak value for the norm of the non-dimensional control mass flow rate Q∗1,
which is reached during the transient active control regime, is only approximately
0.02, i.e. a factor 3 smaller than the maximum value allowed during training. Once
the pseudo-periodic regime is established, the peak value of the actuation is reduced
to approximately 0.006. This is an illustration of the sensitivity of the Navier–Stokes
equations to small perturbations, and a proof that this property of the equations can
be exploited to actively control the flow configuration, if forcing is applied in an
appropriate manner.

3.2. Analysis of the control strategy
The ANN trained through DRL learns a control strategy by using a trial-and-error
method. Understanding which strategy an ANN decides to use from the analysis
of its weights is known to be challenging, even on simple image analysis tasks.
Indeed, the strategy of the network is encoded in the complex combination of the
weights of all its neurons. A number of properties of each individual network, such
as the variations in architecture, make systematic analysis challenging (Schmidhuber
2015; Rauber et al. 2017). Through the combination of the neuron weights, the
network builds its own internal representation of how the flow in a given state will
be affected by actuation, and how this will affect the reward value. This is a sort
of private, ‘encrypted’ model obtained through experience and interaction with the
flow. Therefore, it appears challenging to directly analyse the control strategy from
the trained network, which should be considered rather as a black box in this regard.

Instead, we can look at macroscopic flow features and how the active control
modifies them. This pinpoints the effect of the actuation on the flow and separation
happening in the wake. Representative snapshots of the flow configuration in the
baseline case (no actuation), and in the controlled case when the pseudo-periodic
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FIGURE 4. (Colour online) Comparison of representative snapshots of the velocity
magnitude in the case without actuation (a), and with active flow control (b). The lower
panel corresponds to the established pseudo-periodic modified regime, which is attained
after the initial transient control.

regime is reached (i.e. after the initial large transient actuation), are presented in
figure 4. As can be seen in figure 4, the active control leads to a modification of
the 2D flow configuration. In particular, the Kármán alley is altered in the case
with active control and the velocity fluctuations induced by the vortices are globally
less strong, and less active close to the upper and lower walls. More strikingly, the
extent of the recirculation area is dramatically increased. Defining the recirculation
area as the region in the downstream neighbourhood of the cylinder where the
horizontal component of the velocity is negative, we observe a 130 % increase in
the recirculation area, averaged over the pseudo-period. The recirculation area in
the active control case represents 103 % of what is obtained in the hypothetical
stable configuration of appendix D (so, the recirculation area is slightly larger in
the controlled case than in the hypothetical stable case, though the difference is so
small that it may be due to a side effect such as slightly larger separation close to
the jets, rather than a true change in the extent of the developed wake), while the
recirculation area in the baseline configuration with vortex shedding is only 44 % of
this same stable configuration value. This is, similarly to what was observed for CD,
an illustration of the efficiency of the control strategy at reducing the effect of vortex
shedding.

To go into more details, we look at the mean and the standard deviation (STD)
of the flow velocity magnitude and pressure, averaged over a large number of vortex
shedding periods (in the case with active flow control, we consider the pseudo-periodic
regime). Results are presented in figure 5. Several interesting points are visible from
both the velocity and pressure data. Similarly to what was observed on the snapshots,
the area of the separated wake is larger in the case with active control than in the
baseline. This is clearly visible from the mean value plots of both velocity magnitude
and pressure. This feature results in a lower mean pressure drop in the wake of
the cylinder in the case with active control, which is the cause of the reduced
drag. This phenomenon is similar to boat tailing, which is a well-known method for
reducing the drag between bluff bodies. However, in the present case, this is attained
through applying small controls to the flow rather than modifying the shape of the
obstacle. The STD figures also clearly show a decreased level of fluctuations of
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FIGURE 5. (Colour online) Comparison of the flow morphology without (top part of
each double panel) and with (bottom part of each double panel) actuation. (a) Velocity
magnitude comparisons: mean (upper double panel) and STD (lower double panel).
(b) Pressure comparisons: mean (upper double panel) and STD (lower double panel). The
colour bar is common to both parts of each double panel. A clear increase in size of the
recirculation area is observed with actuation, which is associated with a lower pressure
drop behind the cylinder.
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both the velocity magnitude and the pressure in the wake, as well as a displacement
downstream of the cylinder of the regions where highest flow variations are recorded.

4. Conclusion
We show for the first time that the deep reinforcement learning (DRL) paradigm,

and more specifically the proximal policy optimization (PPO) algorithm, can discover
an active flow control strategy for synthetic jets on a cylinder, and control the
configuration of the 2D Kármán vortex street. From the point of view of the artificial
neural network (ANN) and DRL, this is just yet another environment to interact
with. The discovery of the control strategy takes place through the optimization of a
reward function, here defined from the fluctuations of the drag and lift components
experienced by the cylinder. A drag reduction of up to approximately 8 % is observed.
In order to reduce drag, the ANN decides to increase the area of the separated region,
which in turn induces a lower pressure drop behind the cylinder, and therefore lower
drag. This brings the flow into a configuration that presents some similarities with
what would be obtained from boat tailing. The value of the drag coefficient and
extent of the recirculation bubble when control is turned on are very close to what is
obtained by simulating the flow around a half-cylinder using a symmetric boundary
condition at the lower wall, which allows one to estimate the drag expected around
a cylinder at comparable Reynolds number if no vortex shedding was present. This
implies that the active control is able to effectively cancel the detrimental effect of
vortex shedding on drag. The learning obtained is remarkable, as little metaparameter
tuning was necessary, and training takes place in about one day on a laptop. In
addition, we have resorted to strong regularization of the output of the DRL agent
through under-sampling of the simulation and imposing a continuous control for
helping the learning process. It could be expected that relaxing those constraints, i.e.
giving more freedom to the network, could lead to even more efficient strategies.

These results are potentially of considerable importance for fluid mechanics, as they
provide a proof that DRL can be used to solve the high dimensionality, analytically
untractable problem of active flow control. The ANN and DRL approach has a number
of strengths which make it an appealing methodology. In particular, ANNs allow for
an efficient global approximation of strongly nonlinear functions, and they can be
trained through direct experimentation of the DRL agent with the flow, which makes
it in theory easily applicable to both simulations and experiments without changes
in the DRL methodology. In addition, once trained, the ANN requires only a few
calculations to compute the control at each time step. In the present case when two
hidden layers of width 512 are used, most of the computational cost comes from a
matrix multiplication, where the size of the matrices to multiply is [512, 512]. This is
much less computationally expensive than the underlying problem. Finally, we are able
to show that learning takes place in a timely manner, requiring a reasonable number
of vortex shedding periods to obtain a converged strategy.

This work opens a number of research directions, including applying the DRL
methodology to more complex simulations, for example more realistic three-
dimensional large-eddy simulations or direct numerical simulations on large computer
clusters, or even applying such an approach directly to a real-world experiment. In
addition, a number of interesting questions arise from the use of ANNs and DRL.
For example, can some form of transfer learning be used between simulations and
the real world if the simulations are realistic enough (i.e. can one train an ANN in
a simulation, and then use it in the real world)? The use of DRL for active flow
control may provide a technique to finally take advantage of advanced, complex flow
actuation possibilities, such as those allowed by complex jet actuator arrays.
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Appendix A. Open source code
The source code of this project is released as open source on the GitHub of

the author: https://github.com/jerabaul29/Cylinder2DFlowControlDRL. The simulation
environment is based on the open-source finite-element framework FEniCS (Logg
et al. 2012) version 2017.2.0. The PPO agent is based on the open-source
implementation provided by Tensorforce (Schaarschmidt, Kuhnle & Fricke 2017),
which builds on top of the Tensorflow framework for building artificial neural
networks (Abadi et al. 2016). More details about the simulation environment and the
DRL algorithm are presented in appendices B and C, respectively.

Appendix B. Details of simulation environment
The response of the environment to the action tuple (Q1, Q2) provided by the

agent is determined by computing a solution for the Navier–Stokes equations in the
computational domain Ω:

∂u
∂t
+ u · (∇u)=−∇p+ Re−11u in Ω,

∇ · u= 0 in Ω.

}
(B 1)

To close (B 1), the boundary of the domain is partitioned (see also figure 6) into an
inflow part ΓI , a no-slip part ΓW , an outflow part ΓO and the jet parts Γ1 and Γ2.
Following this decomposition, the system is considered with the following boundary
conditions:

−pn+ Re−1(n · ∇u) = 0 on ΓO,
u = 0 on ΓW,

u = U on ΓI,

u = fQi, on Γi, i= 1, 2.

 (B 2)

Here, U is the inflow velocity profile (2.1) while fQi are radial velocity profiles which
mimic suction or injection of the fluid by the jets. The functions are chosen such
that the prescribed velocity continuously joins the no-slip condition imposed on the
ΓW surfaces of the cylinder. More precisely, we set fQi = A(θ; Qi)(x, y) where the
modulation depends on the angular coordinate θ (cf. figure 6), such that for the jet
with width ω and centred at θ0 placed on the cylinder of radius R the modulation is
set as

A(θ;Q)=Q
π

2ωR2
cos
(π

ω
(θ − θ0)

)
. (B 3)

We remark that with this choice the boundary conditions on the jets are in fact
controlled by single scalar values Qi. Negative values of Qi correspond to suction.

https://github.com/jerabaul29/Cylinder2DFlowControlDRL
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FIGURE 6. (Colour online) Solution domain Ω (not to scale) for the Navier–Stokes
equations of the simulation environment. On parts of the cylinder boundary (in blue)
velocity boundary conditions determined by Qi are prescribed.

To solve (B 1)–(B 2) numerically, the incremental pressure correction scheme (IPCS)
method (Goda 1979) with explicit treatment of the nonlinear term is adopted. Let δt
be the step size of the temporal discretization. Then the velocity u and pressure p for
the next temporal level are computed from the current solutions u0 and p0 in three
steps: the tentative velocity step

u∗ − u0

δt
+ u0 · (∇u0)=−∇p0 + Re−11

u∗ + u0

2
in Ω, (B 4)

the pressure projection step

−1(p− p0)=−δt−1
∇ · u∗ in Ω, (B 5)

and the velocity correction step

u− u∗ =−δt−1
∇(p− p0) in Ω. (B 6)

The steps (B 4) and (B 6) are considered with the boundary conditions (B 2), while for
pressure projection (B 5) a Dirichlet boundary condition p= 0 is used on ΓO and the
remaining boundaries have n · ∇p= 0.

Discretization of the IPCS scheme (B 4)–(B 6) relies on the finite-element method.
More specifically, the velocity and pressure fields are discretized, respectively, in
terms of the continuous quadratic and continuous linear elements on triangular cells.
Because of the explicit treatment of the nonlinearity in (B 4), all the matrices of
linear systems in the scheme are assembled (and their solvers set up) once prior
to entering the time loop in which only the right-hand side vectors are updated. In
our implementation the solvers for the linear systems involved are the sparse direct
solvers from the UMFPACK library (Davis 2004). We remark that the finite-element
mesh used for training consists of 9262 elements and gives rise to systems with
37 804 and 4820 unknowns in (B 4), (B 6) and (B 5), respectively.
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Once u and p have been computed, the drag and lift are integrated over the entire
surface of the cylinder. In particular, the jet surfaces are included.

Appendix C. Deep reinforcement learning, policy gradient method and PPO
In this appendix, we give a brief overview of the policy gradient and PPO methods.

This is a summary of the main lines of the algorithms presented in the corresponding
literature (Lillicrap et al. 2015; Duan et al. 2016), and the reader should consult these
references for further details.

In all the following, the usual DRL framework is used: an ANN controlled by a
DRL agent interacts with a complex system (the environment) through three channels:
a noisy, partial observation of the system (ot), an action applied on the system by
the ANN (at), and a reward provided by the system depending on its state (rt). The
detailed internal state st of the system is usually not available. The interaction takes
place at discrete time steps.

As previously stated, the algorithm used in this work belongs to the policy gradient
class. The aim of this method is to directly obtain the optimal policy π∗(at|ot), i.e.
the distribution probability of action at given the observation ot for maximizing the
long-term actualized reward R(t)=

∑
i>t γ

i−tri, where 0< γ < 1 is a discount factor
in time. In the case of policy gradient methods, the policy is directly modelled
by the ANN. This is in contrast to methods such as Q-learning, where an indirect
description of the policy (in the case of Q-learning, the quality function Q, i.e. the
expected return for each action) is modelled by the ANN. Policy gradient methods
have better stability and convergence properties than Q-learning, and are a more
natural solution for continuous control cases. However, this comes at the cost of
slightly worse exploration properties.

In the following, we will formulate the learning problem as finding all the weights
of the ANN, collectively described by the Θ variable, such as to maximize the
expected return:

Rmax =max
Θ

E

[
H∑

t=0

R(st)|πΘ

]
, (C 1)

where πΘ is the policy function described by the ANN, when it has the weights Θ ,
and st is the (hidden) state of the system.

Following this optimization formulation, one has naturally π∗ = πΘ=Θ∗ , where Θ∗
is the set of weights obtained through the maximization (C 1).

The maximization (C 1) is solved through gradient descent performed on the weights
Θ of the ANN, following experimental sampling of the system through interaction
with the environment. Sophisticated gradient descent batch methods, such as Adagrad
or Adadelta, allow one to automatically set the learning rate in accordance to the
local speed of the gradient descent and provide stabilization of the gradient by adding
momentum. More specifically, if we denote τ a (s–a–r) sequence,

τ = (s0, a0, r0), (s1, a1, r1), . . . , (sH, aH, rH), . . . , (C 2)

and we overload the R operator as R(τ )=
∑

i γ
iri, then the value function obtained

with the weights Θ , which is the quantity that should be maximized, can be written
as

V(Θ)=E

[
H∑

t=0

R(st, ut)|πθ

]
=

∑
τ

P(τ , Θ)R(τ ). (C 3)
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From this point, elementary manipulations lead to

∇ΘV(Θ) =
∑
τ

∇ΘP(τ , Θ)R(τ )

=

∑
τ

P(τ , Θ)
P(τ , Θ)

∇ΘP(τ , Θ)R(τ )

=

∑
τ

P(τ , Θ)
∇ΘP(τ , Θ)
P(τ , Θ)

R(τ )

=

∑
τ

P(τ , Θ)∇Θ log (P(τ , Θ)) R(τ ). (C 4)

The last expression represents a new expected value, which can be empirically
sampled under the policy πΘ and used as the input to the gradient descent.

In this new expression, one needs to estimate the log-prob gradient ∇Θ log(P(τ ,Θ)).
This can be performed in the following way:

∇Θ log(P(τ (i), Θ)) = ∇Θ log

[∏
t

P(s(i)t+1|s
(i)
t , a(i)t )πΘ(a(i)t |s

(i)
t )

]

= ∇Θ

[∑
t

log P(s(i)t+1|s
(i)
t , a(i)t )+

∑
t

log πΘ(a(i)t |s
(i)
t )

]
= ∇Θ

∑
t

log πΘ(a(i)t |s
(i)
t ). (C 5)

This last expression depends only on the policy, not the dynamic model. This allows
effective sampling and gradient descent. In addition, one can show that this method
is unbiased.

In the case of continuous control, as is performed in the present work, the ANN
is used to predict the parameters of a distribution with compact support (i.e. the
distribution is 0 outside of the range of admissible actions; in the present case,
a Γ distribution is used, but other choices are possible), given the input ot. The
distribution obtained at each time step describes the probability distribution for the
optimal action to perform at the corresponding step, following the current belief
encoded by the weights of the ANN. When performing training, the action effectively
taken is sampled following this distribution. This means that there is a level of
exploration randomness when an action is chosen during training. The more uncertain
the network is about which action to take (i.e. the wider the distribution), the more
the network will try different controls. This is the source of the random exploration
during training. By contrast, when the network is used in pure prediction mode, the
DRL agent extracts the action with the highest probability and uses it for the action,
so there is no randomness any longer in the control.

In addition to these main lines of the policy gradient algorithm that we have just
described, a number of technical tricks are implemented to make the method more
easily converge. In particular, a replay memory buffer (Mnih et al. 2013) is used to
store the data empirically sampled. When training is performed, a random subset of
the replay memory buffer is used. This allows the ANN to perform gradient descent
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FIGURE 7. (Colour online) Illustration of the converged flow obtained around a centred
half-domain, using a symmetric boundary condition at the lower boundary. The lower
boundary cuts the cylinder through its equatorial plane. This results in a configuration
where no vortex shedding is present, which constitutes a ‘hypothetical’ no-shedding
baseline to which we can compare our results. The mesh is heavily refined in all the
recirculation area.

on a mostly uncorrelated dataset, which yields better convergence results. In addition,
the PPO method resorts to a several heuristics to improve stability. The most important
one consists in gradient clipping. This makes sure that only small updates of the policy
are performed at each gradient descent. The rationale behind gradient clipping is to
avoid the model to overfit lucky coincidences in the training data.

In the present implementation, Tensorflow is the open-source library providing the
facilities around ANN definition and the gradient descent algorithm, while Tensorforce
(which builds upon Tensorflow) is the open-source library which implements the DRL
algorithm.

Appendix D. Baseline simulation of a half-cylinder without vortex shedding

As vortex shedding is the process which participates in creating drag on the cylinder
that is being mitigated by our active flow control, a modified baseline value of the
drag without vortex shedding can be used to assess the efficiency of the control
strategy. For estimating the modified baseline drag value, we perform a simulation
where the cylinder is placed symmetrically at the centreline of the domain (recall
that, by contrast, in the configuration used in the rest of the article, a slight offset
is present), and further only the upper half of the domain is simulated (cf. figure 7),
with symmetric boundary conditions enforced on the lower boundary (in particular,
v = 0 at the lower domain boundary).

More precisely, referring to the streamwise and vertical velocity components as u
and v, the boundary conditions on the lower boundary are: v= 0 and (∂u/∂y)= 0 for
(B 4), (∂p/∂y)= 0 in (B 5) and v = 0 for (B 6).

As a consequence, the vortex shedding is killed and a modified baseline showing
the drag behind the cylinder when the shedding is absent is obtained. This simulation
is validated through a mesh refinement analysis that is distinct from the one performed
with the full domain.

In this configuration, we obtain an asymptotic drag coefficient for a half-cylinder
which corresponds to a virtual drag coefficient on the full cylinder in a hypothetical
steady state without vortex shedding CDs = 2.93. This value can be compared with
the drag obtained when active flow control is turned on, to estimate how efficient the
control is at reducing the negative effect of vortex shedding on drag. Similarly, the
asymptotic recirculation area for a half-cylinder without vortex shedding is obtained
and the value can be extended to the hypothetical steady case with a full cylinder
(As = 2.41).
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FIGURE 8. (Colour online) Unsteady non-dimensional pressure wake behind the cylinder
after flow initialization without active control and position of the pressure probes in the
case with five (a) and 11 (b) probes. Both the resolution and the regions of the flow on
which information is provided are much reduced compared with the main body of the text.
In both cases, the position of the probes is indicated by black dots, while the position of
the jets is indicated by red squares.

Appendix E. Control with partial system information

All results presented in the main body of the article are obtained with a high
number of velocity probes (151), which provide the network with a relatively detailed
flow description. While presenting a detailed analysis of the sensitivity of the learning
to the number, type, position and noise properties of the probes is outside the focus
of this work, this section illustrates that the network is able to perform learning with
much more partial observation.

More specifically, we performed two trainings with two modified configurations. In
these configurations, either five or 11 pressure probes were located in the vicinity of
the cylinder (the case with five probes), or in the vicinity of the cylinder and the near
wake (the case with 11 probes). The size and structure of the network are otherwise
the same as in the main body of the text. The configuration of the probes is visible in
figure 8. In the case with 11 probes the network receives information about the flow
in a region which includes the neighbourhood of the cylinder and the near wake. In
the case with five probes the network receives only information about the dynamics
in the immediate neighbourhood of the cylinder.

Results obtained by performing control (in deterministic mode, i.e. without
exploration noise), after a training phase similar to what is described in the main
body of the text, are presented in figure 9. As can be seen in figure 9, the networks
with both five and 11 probes are able to learn some valid control strategies, though
the results are a bit less good than what was obtained with 151 velocity probes
(typically, mean values of CD reach 3.03 for five probes, and 2.99 for 11 probes
in the pseudo-periodic regime). This can probably be attributed to the absence
of information about the configuration of the developed wake. This provides an
illustration of the fact that ANNs can also be used to perform efficient control even
when only partial, under-sampled flow information is available.
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FIGURE 9. (Colour online) Time-resolved value of the drag coefficient CD in the case
without (baseline curve) and with active flow control (controlled curves, cases with five,
11, 151 probes; the last one is the same as was reported in the main body of the text), and
corresponding normalized mass flow rates of the control jet 1 (Q∗1, inset for both cases).
This figure is plotted in a similar way to figure 3. As visible here, the asymptotic drag
reduction in the case of a reduced input information size is a bit less good than with
a full flow information. This may be due to both the absence of information about the
far-wake configuration, and the lesser spatial resolution of the sampling.
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